Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
===================================
Documentation for /proc/sys/kernel/
===================================

.. See scripts/check-sysctl-docs to keep this up to date


Copyright (c) 1998, 1999,  Rik van Riel <riel@nl.linux.org>

Copyright (c) 2009,        Shen Feng<shen@cn.fujitsu.com>

For general info and legal blurb, please look in :doc:`index`.

------------------------------------------------------------------------------

This file contains documentation for the sysctl files in
``/proc/sys/kernel/``.

The files in this directory can be used to tune and monitor
miscellaneous and general things in the operation of the Linux
kernel. Since some of the files *can* be used to screw up your
system, it is advisable to read both documentation and source
before actually making adjustments.

Currently, these files might (depending on your configuration)
show up in ``/proc/sys/kernel``:

.. contents:: :local:


acct
====

::

    highwater lowwater frequency

If BSD-style process accounting is enabled these values control
its behaviour. If free space on filesystem where the log lives
goes below ``lowwater``% accounting suspends. If free space gets
above ``highwater``% accounting resumes. ``frequency`` determines
how often do we check the amount of free space (value is in
seconds). Default:

::

    4 2 30

That is, suspend accounting if free space drops below 2%; resume it
if it increases to at least 4%; consider information about amount of
free space valid for 30 seconds.


acpi_video_flags
================

See :doc:`/power/video`. This allows the video resume mode to be set,
in a similar fashion to the ``acpi_sleep`` kernel parameter, by
combining the following values:

= =======
1 s3_bios
2 s3_mode
4 s3_beep
= =======


auto_msgmni
===========

This variable has no effect and may be removed in future kernel
releases. Reading it always returns 0.
Up to Linux 3.17, it enabled/disabled automatic recomputing of
`msgmni`_
upon memory add/remove or upon IPC namespace creation/removal.
Echoing "1" into this file enabled msgmni automatic recomputing.
Echoing "0" turned it off. The default value was 1.


bootloader_type (x86 only)
==========================

This gives the bootloader type number as indicated by the bootloader,
shifted left by 4, and OR'd with the low four bits of the bootloader
version.  The reason for this encoding is that this used to match the
``type_of_loader`` field in the kernel header; the encoding is kept for
backwards compatibility.  That is, if the full bootloader type number
is 0x15 and the full version number is 0x234, this file will contain
the value 340 = 0x154.

See the ``type_of_loader`` and ``ext_loader_type`` fields in
:doc:`/x86/boot` for additional information.


bootloader_version (x86 only)
=============================

The complete bootloader version number.  In the example above, this
file will contain the value 564 = 0x234.

See the ``type_of_loader`` and ``ext_loader_ver`` fields in
:doc:`/x86/boot` for additional information.


bpf_stats_enabled
=================

Controls whether the kernel should collect statistics on BPF programs
(total time spent running, number of times run...). Enabling
statistics causes a slight reduction in performance on each program
run. The statistics can be seen using ``bpftool``.

= ===================================
0 Don't collect statistics (default).
1 Collect statistics.
= ===================================


cad_pid
=======

This is the pid which will be signalled on reboot (notably, by
Ctrl-Alt-Delete). Writing a value to this file which doesn't
correspond to a running process will result in ``-ESRCH``.

See also `ctrl-alt-del`_.


cap_last_cap
============

Highest valid capability of the running kernel.  Exports
``CAP_LAST_CAP`` from the kernel.


core_pattern
============

``core_pattern`` is used to specify a core dumpfile pattern name.

* max length 127 characters; default value is "core"
* ``core_pattern`` is used as a pattern template for the output
  filename; certain string patterns (beginning with '%') are
  substituted with their actual values.
* backward compatibility with ``core_uses_pid``:

	If ``core_pattern`` does not include "%p" (default does not)
	and ``core_uses_pid`` is set, then .PID will be appended to
	the filename.

* corename format specifiers

	========	==========================================
	%<NUL>		'%' is dropped
	%%		output one '%'
	%p		pid
	%P		global pid (init PID namespace)
	%i		tid
	%I		global tid (init PID namespace)
	%u		uid (in initial user namespace)
	%g		gid (in initial user namespace)
	%d		dump mode, matches ``PR_SET_DUMPABLE`` and
			``/proc/sys/fs/suid_dumpable``
	%s		signal number
	%t		UNIX time of dump
	%h		hostname
	%e		executable filename (may be shortened, could be changed by prctl etc)
	%f      	executable filename
	%E		executable path
	%c		maximum size of core file by resource limit RLIMIT_CORE
	%<OTHER>	both are dropped
	========	==========================================

* If the first character of the pattern is a '|', the kernel will treat
  the rest of the pattern as a command to run.  The core dump will be
  written to the standard input of that program instead of to a file.


core_pipe_limit
===============

This sysctl is only applicable when `core_pattern`_ is configured to
pipe core files to a user space helper (when the first character of
``core_pattern`` is a '|', see above).
When collecting cores via a pipe to an application, it is occasionally
useful for the collecting application to gather data about the
crashing process from its ``/proc/pid`` directory.
In order to do this safely, the kernel must wait for the collecting
process to exit, so as not to remove the crashing processes proc files
prematurely.
This in turn creates the possibility that a misbehaving userspace
collecting process can block the reaping of a crashed process simply
by never exiting.
This sysctl defends against that.
It defines how many concurrent crashing processes may be piped to user
space applications in parallel.
If this value is exceeded, then those crashing processes above that
value are noted via the kernel log and their cores are skipped.
0 is a special value, indicating that unlimited processes may be
captured in parallel, but that no waiting will take place (i.e. the
collecting process is not guaranteed access to ``/proc/<crashing
pid>/``).
This value defaults to 0.


core_uses_pid
=============

The default coredump filename is "core".  By setting
``core_uses_pid`` to 1, the coredump filename becomes core.PID.
If `core_pattern`_ does not include "%p" (default does not)
and ``core_uses_pid`` is set, then .PID will be appended to
the filename.


ctrl-alt-del
============

When the value in this file is 0, ctrl-alt-del is trapped and
sent to the ``init(1)`` program to handle a graceful restart.
When, however, the value is > 0, Linux's reaction to a Vulcan
Nerve Pinch (tm) will be an immediate reboot, without even
syncing its dirty buffers.

Note:
  when a program (like dosemu) has the keyboard in 'raw'
  mode, the ctrl-alt-del is intercepted by the program before it
  ever reaches the kernel tty layer, and it's up to the program
  to decide what to do with it.


dmesg_restrict
==============

This toggle indicates whether unprivileged users are prevented
from using ``dmesg(8)`` to view messages from the kernel's log
buffer.
When ``dmesg_restrict`` is set to 0 there are no restrictions.
When ``dmesg_restrict`` is set to 1, users must have
``CAP_SYSLOG`` to use ``dmesg(8)``.

The kernel config option ``CONFIG_SECURITY_DMESG_RESTRICT`` sets the
default value of ``dmesg_restrict``.


domainname & hostname
=====================

These files can be used to set the NIS/YP domainname and the
hostname of your box in exactly the same way as the commands
domainname and hostname, i.e.::

	# echo "darkstar" > /proc/sys/kernel/hostname
	# echo "mydomain" > /proc/sys/kernel/domainname

has the same effect as::

	# hostname "darkstar"
	# domainname "mydomain"

Note, however, that the classic darkstar.frop.org has the
hostname "darkstar" and DNS (Internet Domain Name Server)
domainname "frop.org", not to be confused with the NIS (Network
Information Service) or YP (Yellow Pages) domainname. These two
domain names are in general different. For a detailed discussion
see the ``hostname(1)`` man page.


firmware_config
===============

See :doc:`/driver-api/firmware/fallback-mechanisms`.

The entries in this directory allow the firmware loader helper
fallback to be controlled:

* ``force_sysfs_fallback``, when set to 1, forces the use of the
  fallback;
* ``ignore_sysfs_fallback``, when set to 1, ignores any fallback.


ftrace_dump_on_oops
===================

Determines whether ``ftrace_dump()`` should be called on an oops (or
kernel panic). This will output the contents of the ftrace buffers to
the console.  This is very useful for capturing traces that lead to
crashes and outputting them to a serial console.

= ===================================================
0 Disabled (default).
1 Dump buffers of all CPUs.
2 Dump the buffer of the CPU that triggered the oops.
= ===================================================


ftrace_enabled, stack_tracer_enabled
====================================

See :doc:`/trace/ftrace`.


hardlockup_all_cpu_backtrace
============================

This value controls the hard lockup detector behavior when a hard
lockup condition is detected as to whether or not to gather further
debug information. If enabled, arch-specific all-CPU stack dumping
will be initiated.

= ============================================
0 Do nothing. This is the default behavior.
1 On detection capture more debug information.
= ============================================


hardlockup_panic
================

This parameter can be used to control whether the kernel panics
when a hard lockup is detected.

= ===========================
0 Don't panic on hard lockup.
1 Panic on hard lockup.
= ===========================

See :doc:`/admin-guide/lockup-watchdogs` for more information.
This can also be set using the nmi_watchdog kernel parameter.


hotplug
=======

Path for the hotplug policy agent.
Default value is "``/sbin/hotplug``".


hung_task_all_cpu_backtrace
===========================

If this option is set, the kernel will send an NMI to all CPUs to dump
their backtraces when a hung task is detected. This file shows up if
CONFIG_DETECT_HUNG_TASK and CONFIG_SMP are enabled.

0: Won't show all CPUs backtraces when a hung task is detected.
This is the default behavior.

1: Will non-maskably interrupt all CPUs and dump their backtraces when
a hung task is detected.


hung_task_panic
===============

Controls the kernel's behavior when a hung task is detected.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.

= =================================================
0 Continue operation. This is the default behavior.
1 Panic immediately.
= =================================================


hung_task_check_count
=====================

The upper bound on the number of tasks that are checked.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.


hung_task_timeout_secs
======================

When a task in D state did not get scheduled
for more than this value report a warning.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.

0 means infinite timeout, no checking is done.

Possible values to set are in range {0:``LONG_MAX``/``HZ``}.


hung_task_check_interval_secs
=============================

Hung task check interval. If hung task checking is enabled
(see `hung_task_timeout_secs`_), the check is done every
``hung_task_check_interval_secs`` seconds.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.

0 (default) means use ``hung_task_timeout_secs`` as checking
interval.

Possible values to set are in range {0:``LONG_MAX``/``HZ``}.


hung_task_warnings
==================

The maximum number of warnings to report. During a check interval
if a hung task is detected, this value is decreased by 1.
When this value reaches 0, no more warnings will be reported.
This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.

-1: report an infinite number of warnings.


hyperv_record_panic_msg
=======================

Controls whether the panic kmsg data should be reported to Hyper-V.

= =========================================================
0 Do not report panic kmsg data.
1 Report the panic kmsg data. This is the default behavior.
= =========================================================


ignore-unaligned-usertrap
=========================

On architectures where unaligned accesses cause traps, and where this
feature is supported (``CONFIG_SYSCTL_ARCH_UNALIGN_NO_WARN``;
currently, ``arc`` and ``ia64``), controls whether all unaligned traps
are logged.

= =============================================================
0 Log all unaligned accesses.
1 Only warn the first time a process traps. This is the default
  setting.
= =============================================================

See also `unaligned-trap`_ and `unaligned-dump-stack`_. On ``ia64``,
this allows system administrators to override the
``IA64_THREAD_UAC_NOPRINT`` ``prctl`` and avoid logs being flooded.


kexec_load_disabled
===================

A toggle indicating if the ``kexec_load`` syscall has been disabled.
This value defaults to 0 (false: ``kexec_load`` enabled), but can be
set to 1 (true: ``kexec_load`` disabled).
Once true, kexec can no longer be used, and the toggle cannot be set
back to false.
This allows a kexec image to be loaded before disabling the syscall,
allowing a system to set up (and later use) an image without it being
altered.
Generally used together with the `modules_disabled`_ sysctl.


kptr_restrict
=============

This toggle indicates whether restrictions are placed on
exposing kernel addresses via ``/proc`` and other interfaces.

When ``kptr_restrict`` is set to 0 (the default) the address is hashed
before printing.
(This is the equivalent to %p.)

When ``kptr_restrict`` is set to 1, kernel pointers printed using the
%pK format specifier will be replaced with 0s unless the user has
``CAP_SYSLOG`` and effective user and group ids are equal to the real
ids.
This is because %pK checks are done at read() time rather than open()
time, so if permissions are elevated between the open() and the read()
(e.g via a setuid binary) then %pK will not leak kernel pointers to
unprivileged users.
Note, this is a temporary solution only.
The correct long-term solution is to do the permission checks at
open() time.
Consider removing world read permissions from files that use %pK, and
using `dmesg_restrict`_ to protect against uses of %pK in ``dmesg(8)``
if leaking kernel pointer values to unprivileged users is a concern.

When ``kptr_restrict`` is set to 2, kernel pointers printed using
%pK will be replaced with 0s regardless of privileges.


modprobe
========

The full path to the usermode helper for autoloading kernel modules,
by default ``CONFIG_MODPROBE_PATH``, which in turn defaults to
"/sbin/modprobe".  This binary is executed when the kernel requests a
module.  For example, if userspace passes an unknown filesystem type
to mount(), then the kernel will automatically request the
corresponding filesystem module by executing this usermode helper.
This usermode helper should insert the needed module into the kernel.

This sysctl only affects module autoloading.  It has no effect on the
ability to explicitly insert modules.

This sysctl can be used to debug module loading requests::

    echo '#! /bin/sh' > /tmp/modprobe
    echo 'echo "$@" >> /tmp/modprobe.log' >> /tmp/modprobe
    echo 'exec /sbin/modprobe "$@"' >> /tmp/modprobe
    chmod a+x /tmp/modprobe
    echo /tmp/modprobe > /proc/sys/kernel/modprobe

Alternatively, if this sysctl is set to the empty string, then module
autoloading is completely disabled.  The kernel will not try to
execute a usermode helper at all, nor will it call the
kernel_module_request LSM hook.

If CONFIG_STATIC_USERMODEHELPER=y is set in the kernel configuration,
then the configured static usermode helper overrides this sysctl,
except that the empty string is still accepted to completely disable
module autoloading as described above.

modules_disabled
================

A toggle value indicating if modules are allowed to be loaded
in an otherwise modular kernel.  This toggle defaults to off
(0), but can be set true (1).  Once true, modules can be
neither loaded nor unloaded, and the toggle cannot be set back
to false.  Generally used with the `kexec_load_disabled`_ toggle.


.. _msgmni:

msgmax, msgmnb, and msgmni
==========================

``msgmax`` is the maximum size of an IPC message, in bytes. 8192 by
default (``MSGMAX``).

``msgmnb`` is the maximum size of an IPC queue, in bytes. 16384 by
default (``MSGMNB``).

``msgmni`` is the maximum number of IPC queues. 32000 by default
(``MSGMNI``).


msg_next_id, sem_next_id, and shm_next_id (System V IPC)
========================================================

These three toggles allows to specify desired id for next allocated IPC
object: message, semaphore or shared memory respectively.

By default they are equal to -1, which means generic allocation logic.
Possible values to set are in range {0:``INT_MAX``}.

Notes:
  1) kernel doesn't guarantee, that new object will have desired id. So,
     it's up to userspace, how to handle an object with "wrong" id.
  2) Toggle with non-default value will be set back to -1 by kernel after
     successful IPC object allocation. If an IPC object allocation syscall
     fails, it is undefined if the value remains unmodified or is reset to -1.


ngroups_max
===========

Maximum number of supplementary groups, _i.e._ the maximum size which
``setgroups`` will accept. Exports ``NGROUPS_MAX`` from the kernel.



nmi_watchdog
============

This parameter can be used to control the NMI watchdog
(i.e. the hard lockup detector) on x86 systems.

= =================================
0 Disable the hard lockup detector.
1 Enable the hard lockup detector.
= =================================

The hard lockup detector monitors each CPU for its ability to respond to
timer interrupts. The mechanism utilizes CPU performance counter registers
that are programmed to generate Non-Maskable Interrupts (NMIs) periodically
while a CPU is busy. Hence, the alternative name 'NMI watchdog'.

The NMI watchdog is disabled by default if the kernel is running as a guest
in a KVM virtual machine. This default can be overridden by adding::

   nmi_watchdog=1

to the guest kernel command line (see :doc:`/admin-guide/kernel-parameters`).


numa_balancing
==============

Enables/disables automatic page fault based NUMA memory
balancing. Memory is moved automatically to nodes
that access it often.

Enables/disables automatic NUMA memory balancing. On NUMA machines, there
is a performance penalty if remote memory is accessed by a CPU. When this
feature is enabled the kernel samples what task thread is accessing memory
by periodically unmapping pages and later trapping a page fault. At the
time of the page fault, it is determined if the data being accessed should
be migrated to a local memory node.

The unmapping of pages and trapping faults incur additional overhead that
ideally is offset by improved memory locality but there is no universal
guarantee. If the target workload is already bound to NUMA nodes then this
feature should be disabled. Otherwise, if the system overhead from the
feature is too high then the rate the kernel samples for NUMA hinting
faults may be controlled by the `numa_balancing_scan_period_min_ms,
numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms,
numa_balancing_scan_size_mb`_, and numa_balancing_settle_count sysctls.


numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb
===============================================================================================================================


Automatic NUMA balancing scans tasks address space and unmaps pages to
detect if pages are properly placed or if the data should be migrated to a
memory node local to where the task is running.  Every "scan delay" the task
scans the next "scan size" number of pages in its address space. When the
end of the address space is reached the scanner restarts from the beginning.

In combination, the "scan delay" and "scan size" determine the scan rate.
When "scan delay" decreases, the scan rate increases.  The scan delay and
hence the scan rate of every task is adaptive and depends on historical
behaviour. If pages are properly placed then the scan delay increases,
otherwise the scan delay decreases.  The "scan size" is not adaptive but
the higher the "scan size", the higher the scan rate.

Higher scan rates incur higher system overhead as page faults must be
trapped and potentially data must be migrated. However, the higher the scan
rate, the more quickly a tasks memory is migrated to a local node if the
workload pattern changes and minimises performance impact due to remote
memory accesses. These sysctls control the thresholds for scan delays and
the number of pages scanned.

``numa_balancing_scan_period_min_ms`` is the minimum time in milliseconds to
scan a tasks virtual memory. It effectively controls the maximum scanning
rate for each task.

``numa_balancing_scan_delay_ms`` is the starting "scan delay" used for a task
when it initially forks.

``numa_balancing_scan_period_max_ms`` is the maximum time in milliseconds to
scan a tasks virtual memory. It effectively controls the minimum scanning
rate for each task.

``numa_balancing_scan_size_mb`` is how many megabytes worth of pages are
scanned for a given scan.


oops_all_cpu_backtrace
======================

If this option is set, the kernel will send an NMI to all CPUs to dump
their backtraces when an oops event occurs. It should be used as a last
resort in case a panic cannot be triggered (to protect VMs running, for
example) or kdump can't be collected. This file shows up if CONFIG_SMP
is enabled.

0: Won't show all CPUs backtraces when an oops is detected.
This is the default behavior.

1: Will non-maskably interrupt all CPUs and dump their backtraces when
an oops event is detected.


osrelease, ostype & version
===========================

::

  # cat osrelease
  2.1.88
  # cat ostype
  Linux
  # cat version
  #5 Wed Feb 25 21:49:24 MET 1998

The files ``osrelease`` and ``ostype`` should be clear enough.
``version``
needs a little more clarification however. The '#5' means that
this is the fifth kernel built from this source base and the
date behind it indicates the time the kernel was built.
The only way to tune these values is to rebuild the kernel :-)


overflowgid & overflowuid
=========================

if your architecture did not always support 32-bit UIDs (i.e. arm,
i386, m68k, sh, and sparc32), a fixed UID and GID will be returned to
applications that use the old 16-bit UID/GID system calls, if the
actual UID or GID would exceed 65535.

These sysctls allow you to change the value of the fixed UID and GID.
The default is 65534.


panic
=====

The value in this file determines the behaviour of the kernel on a
panic:

* if zero, the kernel will loop forever;
* if negative, the kernel will reboot immediately;
* if positive, the kernel will reboot after the corresponding number
  of seconds.

When you use the software watchdog, the recommended setting is 60.


panic_on_io_nmi
===============

Controls the kernel's behavior when a CPU receives an NMI caused by
an IO error.

= ==================================================================
0 Try to continue operation (default).
1 Panic immediately. The IO error triggered an NMI. This indicates a
  serious system condition which could result in IO data corruption.
  Rather than continuing, panicking might be a better choice. Some
  servers issue this sort of NMI when the dump button is pushed,
  and you can use this option to take a crash dump.
= ==================================================================


panic_on_oops
=============

Controls the kernel's behaviour when an oops or BUG is encountered.

= ===================================================================
0 Try to continue operation.
1 Panic immediately.  If the `panic` sysctl is also non-zero then the
  machine will be rebooted.
= ===================================================================


panic_on_stackoverflow
======================

Controls the kernel's behavior when detecting the overflows of
kernel, IRQ and exception stacks except a user stack.
This file shows up if ``CONFIG_DEBUG_STACKOVERFLOW`` is enabled.

= ==========================
0 Try to continue operation.
1 Panic immediately.
= ==========================


panic_on_unrecovered_nmi
========================

The default Linux behaviour on an NMI of either memory or unknown is
to continue operation. For many environments such as scientific
computing it is preferable that the box is taken out and the error
dealt with than an uncorrected parity/ECC error get propagated.

A small number of systems do generate NMIs for bizarre random reasons
such as power management so the default is off. That sysctl works like
the existing panic controls already in that directory.


panic_on_warn
=============

Calls panic() in the WARN() path when set to 1.  This is useful to avoid
a kernel rebuild when attempting to kdump at the location of a WARN().

= ================================================
0 Only WARN(), default behaviour.
1 Call panic() after printing out WARN() location.
= ================================================


panic_print
===========

Bitmask for printing system info when panic happens. User can chose
combination of the following bits:

=====  ============================================
bit 0  print all tasks info
bit 1  print system memory info
bit 2  print timer info
bit 3  print locks info if ``CONFIG_LOCKDEP`` is on
bit 4  print ftrace buffer
=====  ============================================

So for example to print tasks and memory info on panic, user can::

  echo 3 > /proc/sys/kernel/panic_print


panic_on_rcu_stall
==================

When set to 1, calls panic() after RCU stall detection messages. This
is useful to define the root cause of RCU stalls using a vmcore.

= ============================================================
0 Do not panic() when RCU stall takes place, default behavior.
1 panic() after printing RCU stall messages.
= ============================================================


perf_cpu_time_max_percent
=========================

Hints to the kernel how much CPU time it should be allowed to
use to handle perf sampling events.  If the perf subsystem
is informed that its samples are exceeding this limit, it
will drop its sampling frequency to attempt to reduce its CPU
usage.

Some perf sampling happens in NMIs.  If these samples
unexpectedly take too long to execute, the NMIs can become
stacked up next to each other so much that nothing else is
allowed to execute.

===== ========================================================
0     Disable the mechanism.  Do not monitor or correct perf's
      sampling rate no matter how CPU time it takes.

1-100 Attempt to throttle perf's sample rate to this
      percentage of CPU.  Note: the kernel calculates an
      "expected" length of each sample event.  100 here means
      100% of that expected length.  Even if this is set to
      100, you may still see sample throttling if this
      length is exceeded.  Set to 0 if you truly do not care
      how much CPU is consumed.
===== ========================================================


perf_event_paranoid
===================

Controls use of the performance events system by unprivileged
users (without CAP_PERFMON).  The default value is 2.

For backward compatibility reasons access to system performance
monitoring and observability remains open for CAP_SYS_ADMIN
privileged processes but CAP_SYS_ADMIN usage for secure system
performance monitoring and observability operations is discouraged
with respect to CAP_PERFMON use cases.

===  ==================================================================
 -1  Allow use of (almost) all events by all users.

     Ignore mlock limit after perf_event_mlock_kb without
     ``CAP_IPC_LOCK``.

>=0  Disallow ftrace function tracepoint by users without
     ``CAP_PERFMON``.

     Disallow raw tracepoint access by users without ``CAP_PERFMON``.

>=1  Disallow CPU event access by users without ``CAP_PERFMON``.

>=2  Disallow kernel profiling by users without ``CAP_PERFMON``.
===  ==================================================================


perf_event_max_stack
====================

Controls maximum number of stack frames to copy for (``attr.sample_type &
PERF_SAMPLE_CALLCHAIN``) configured events, for instance, when using
'``perf record -g``' or '``perf trace --call-graph fp``'.

This can only be done when no events are in use that have callchains
enabled, otherwise writing to this file will return ``-EBUSY``.

The default value is 127.


perf_event_mlock_kb
===================

Control size of per-cpu ring buffer not counted against mlock limit.

The default value is 512 + 1 page


perf_event_max_contexts_per_stack
=================================

Controls maximum number of stack frame context entries for
(``attr.sample_type & PERF_SAMPLE_CALLCHAIN``) configured events, for
instance, when using '``perf record -g``' or '``perf trace --call-graph fp``'.

This can only be done when no events are in use that have callchains
enabled, otherwise writing to this file will return ``-EBUSY``.

The default value is 8.


pid_max
=======

PID allocation wrap value.  When the kernel's next PID value
reaches this value, it wraps back to a minimum PID value.
PIDs of value ``pid_max`` or larger are not allocated.


ns_last_pid
===========

The last pid allocated in the current (the one task using this sysctl
lives in) pid namespace. When selecting a pid for a next task on fork
kernel tries to allocate a number starting from this one.


powersave-nap (PPC only)
========================

If set, Linux-PPC will use the 'nap' mode of powersaving,
otherwise the 'doze' mode will be used.


==============================================================

printk
======

The four values in printk denote: ``console_loglevel``,
``default_message_loglevel``, ``minimum_console_loglevel`` and
``default_console_loglevel`` respectively.

These values influence printk() behavior when printing or
logging error messages. See '``man 2 syslog``' for more info on
the different loglevels.

======================== =====================================
console_loglevel         messages with a higher priority than
                         this will be printed to the console
default_message_loglevel messages without an explicit priority
                         will be printed with this priority
minimum_console_loglevel minimum (highest) value to which
                         console_loglevel can be set
default_console_loglevel default value for console_loglevel
======================== =====================================


printk_delay
============

Delay each printk message in ``printk_delay`` milliseconds

Value from 0 - 10000 is allowed.


printk_ratelimit
================

Some warning messages are rate limited. ``printk_ratelimit`` specifies
the minimum length of time between these messages (in seconds).
The default value is 5 seconds.

A value of 0 will disable rate limiting.


printk_ratelimit_burst
======================

While long term we enforce one message per `printk_ratelimit`_
seconds, we do allow a burst of messages to pass through.
``printk_ratelimit_burst`` specifies the number of messages we can
send before ratelimiting kicks in.

The default value is 10 messages.


printk_devkmsg
==============

Control the logging to ``/dev/kmsg`` from userspace:

========= =============================================
ratelimit default, ratelimited
on        unlimited logging to /dev/kmsg from userspace
off       logging to /dev/kmsg disabled
========= =============================================

The kernel command line parameter ``printk.devkmsg=`` overrides this and is
a one-time setting until next reboot: once set, it cannot be changed by
this sysctl interface anymore.

==============================================================


pty
===

See Documentation/filesystems/devpts.rst.


random
======

This is a directory, with the following entries:

* ``boot_id``: a UUID generated the first time this is retrieved, and
  unvarying after that;

* ``entropy_avail``: the pool's entropy count, in bits;

* ``poolsize``: the entropy pool size, in bits;

* ``urandom_min_reseed_secs``: obsolete (used to determine the minimum
  number of seconds between urandom pool reseeding).

* ``uuid``: a UUID generated every time this is retrieved (this can
  thus be used to generate UUIDs at will);

* ``write_wakeup_threshold``: when the entropy count drops below this
  (as a number of bits), processes waiting to write to ``/dev/random``
  are woken up.

If ``drivers/char/random.c`` is built with ``ADD_INTERRUPT_BENCH``
defined, these additional entries are present:

* ``add_interrupt_avg_cycles``: the average number of cycles between
  interrupts used to feed the pool;

* ``add_interrupt_avg_deviation``: the standard deviation seen on the
  number of cycles between interrupts used to feed the pool.


randomize_va_space
==================

This option can be used to select the type of process address
space randomization that is used in the system, for architectures
that support this feature.

==  ===========================================================================
0   Turn the process address space randomization off.  This is the
    default for architectures that do not support this feature anyways,
    and kernels that are booted with the "norandmaps" parameter.

1   Make the addresses of mmap base, stack and VDSO page randomized.
    This, among other things, implies that shared libraries will be
    loaded to random addresses.  Also for PIE-linked binaries, the
    location of code start is randomized.  This is the default if the
    ``CONFIG_COMPAT_BRK`` option is enabled.

2   Additionally enable heap randomization.  This is the default if
    ``CONFIG_COMPAT_BRK`` is disabled.

    There are a few legacy applications out there (such as some ancient
    versions of libc.so.5 from 1996) that assume that brk area starts
    just after the end of the code+bss.  These applications break when
    start of the brk area is randomized.  There are however no known
    non-legacy applications that would be broken this way, so for most
    systems it is safe to choose full randomization.

    Systems with ancient and/or broken binaries should be configured
    with ``CONFIG_COMPAT_BRK`` enabled, which excludes the heap from process
    address space randomization.
==  ===========================================================================


real-root-dev
=============

See :doc:`/admin-guide/initrd`.


reboot-cmd (SPARC only)
=======================

??? This seems to be a way to give an argument to the Sparc
ROM/Flash boot loader. Maybe to tell it what to do after
rebooting. ???


sched_energy_aware
==================

Enables/disables Energy Aware Scheduling (EAS). EAS starts
automatically on platforms where it can run (that is,
platforms with asymmetric CPU topologies and having an Energy
Model available). If your platform happens to meet the
requirements for EAS but you do not want to use it, change
this value to 0.


sched_schedstats
================

Enables/disables scheduler statistics. Enabling this feature
incurs a small amount of overhead in the scheduler but is
useful for debugging and performance tuning.

sched_util_clamp_min
====================

Max allowed *minimum* utilization.

Default value is 1024, which is the maximum possible value.

It means that any requested uclamp.min value cannot be greater than
sched_util_clamp_min, i.e., it is restricted to the range
[0:sched_util_clamp_min].

sched_util_clamp_max
====================

Max allowed *maximum* utilization.

Default value is 1024, which is the maximum possible value.

It means that any requested uclamp.max value cannot be greater than
sched_util_clamp_max, i.e., it is restricted to the range
[0:sched_util_clamp_max].

sched_util_clamp_min_rt_default
===============================

By default Linux is tuned for performance. Which means that RT tasks always run
at the highest frequency and most capable (highest capacity) CPU (in
heterogeneous systems).

Uclamp achieves this by setting the requested uclamp.min of all RT tasks to
1024 by default, which effectively boosts the tasks to run at the highest
frequency and biases them to run on the biggest CPU.

This knob allows admins to change the default behavior when uclamp is being
used. In battery powered devices particularly, running at the maximum
capacity and frequency will increase energy consumption and shorten the battery
life.

This knob is only effective for RT tasks which the user hasn't modified their
requested uclamp.min value via sched_setattr() syscall.

This knob will not escape the range constraint imposed by sched_util_clamp_min
defined above.

For example if

	sched_util_clamp_min_rt_default = 800
	sched_util_clamp_min = 600

Then the boost will be clamped to 600 because 800 is outside of the permissible
range of [0:600]. This could happen for instance if a powersave mode will
restrict all boosts temporarily by modifying sched_util_clamp_min. As soon as
this restriction is lifted, the requested sched_util_clamp_min_rt_default
will take effect.

seccomp
=======

See :doc:`/userspace-api/seccomp_filter`.


sg-big-buff
===========

This file shows the size of the generic SCSI (sg) buffer.
You can't tune it just yet, but you could change it on
compile time by editing ``include/scsi/sg.h`` and changing
the value of ``SG_BIG_BUFF``.

There shouldn't be any reason to change this value. If
you can come up with one, you probably know what you
are doing anyway :)


shmall
======

This parameter sets the total amount of shared memory pages that
can be used system wide. Hence, ``shmall`` should always be at least
``ceil(shmmax/PAGE_SIZE)``.

If you are not sure what the default ``PAGE_SIZE`` is on your Linux
system, you can run the following command::

	# getconf PAGE_SIZE


shmmax
======

This value can be used to query and set the run time limit
on the maximum shared memory segment size that can be created.
Shared memory segments up to 1Gb are now supported in the
kernel.  This value defaults to ``SHMMAX``.


shmmni
======

This value determines the maximum number of shared memory segments.
4096 by default (``SHMMNI``).


shm_rmid_forced
===============

Linux lets you set resource limits, including how much memory one
process can consume, via ``setrlimit(2)``.  Unfortunately, shared memory
segments are allowed to exist without association with any process, and
thus might not be counted against any resource limits.  If enabled,
shared memory segments are automatically destroyed when their attach
count becomes zero after a detach or a process termination.  It will
also destroy segments that were created, but never attached to, on exit
from the process.  The only use left for ``IPC_RMID`` is to immediately
destroy an unattached segment.  Of course, this breaks the way things are
defined, so some applications might stop working.  Note that this
feature will do you no good unless you also configure your resource
limits (in particular, ``RLIMIT_AS`` and ``RLIMIT_NPROC``).  Most systems don't
need this.

Note that if you change this from 0 to 1, already created segments
without users and with a dead originative process will be destroyed.


sysctl_writes_strict
====================

Control how file position affects the behavior of updating sysctl values
via the ``/proc/sys`` interface:

  ==   ======================================================================
  -1   Legacy per-write sysctl value handling, with no printk warnings.
       Each write syscall must fully contain the sysctl value to be
       written, and multiple writes on the same sysctl file descriptor
       will rewrite the sysctl value, regardless of file position.
   0   Same behavior as above, but warn about processes that perform writes
       to a sysctl file descriptor when the file position is not 0.
   1   (default) Respect file position when writing sysctl strings. Multiple
       writes will append to the sysctl value buffer. Anything past the max
       length of the sysctl value buffer will be ignored. Writes to numeric
       sysctl entries must always be at file position 0 and the value must
       be fully contained in the buffer sent in the write syscall.
  ==   ======================================================================


softlockup_all_cpu_backtrace
============================

This value controls the soft lockup detector thread's behavior
when a soft lockup condition is detected as to whether or not
to gather further debug information. If enabled, each cpu will
be issued an NMI and instructed to capture stack trace.

This feature is only applicable for architectures which support
NMI.

= ============================================
0 Do nothing. This is the default behavior.
1 On detection capture more debug information.
= ============================================


softlockup_panic
=================

This parameter can be used to control whether the kernel panics
when a soft lockup is detected.

= ============================================
0 Don't panic on soft lockup.
1 Panic on soft lockup.
= ============================================

This can also be set using the softlockup_panic kernel parameter.


soft_watchdog
=============

This parameter can be used to control the soft lockup detector.

= =================================
0 Disable the soft lockup detector.
1 Enable the soft lockup detector.
= =================================

The soft lockup detector monitors CPUs for threads that are hogging the CPUs
without rescheduling voluntarily, and thus prevent the 'watchdog/N' threads
from running. The mechanism depends on the CPUs ability to respond to timer
interrupts which are needed for the 'watchdog/N' threads to be woken up by
the watchdog timer function, otherwise the NMI watchdog — if enabled — can
detect a hard lockup condition.


stack_erasing
=============

This parameter can be used to control kernel stack erasing at the end
of syscalls for kernels built with ``CONFIG_GCC_PLUGIN_STACKLEAK``.

That erasing reduces the information which kernel stack leak bugs
can reveal and blocks some uninitialized stack variable attacks.
The tradeoff is the performance impact: on a single CPU system kernel
compilation sees a 1% slowdown, other systems and workloads may vary.

= ====================================================================
0 Kernel stack erasing is disabled, STACKLEAK_METRICS are not updated.
1 Kernel stack erasing is enabled (default), it is performed before
  returning to the userspace at the end of syscalls.
= ====================================================================


stop-a (SPARC only)
===================

Controls Stop-A:

= ====================================
0 Stop-A has no effect.
1 Stop-A breaks to the PROM (default).
= ====================================

Stop-A is always enabled on a panic, so that the user can return to
the boot PROM.


sysrq
=====

See :doc:`/admin-guide/sysrq`.


tainted
=======

Non-zero if the kernel has been tainted. Numeric values, which can be
ORed together. The letters are seen in "Tainted" line of Oops reports.

======  =====  ==============================================================
     1  `(P)`  proprietary module was loaded
     2  `(F)`  module was force loaded
     4  `(S)`  kernel running on an out of specification system
     8  `(R)`  module was force unloaded
    16  `(M)`  processor reported a Machine Check Exception (MCE)
    32  `(B)`  bad page referenced or some unexpected page flags
    64  `(U)`  taint requested by userspace application
   128  `(D)`  kernel died recently, i.e. there was an OOPS or BUG
   256  `(A)`  an ACPI table was overridden by user
   512  `(W)`  kernel issued warning
  1024  `(C)`  staging driver was loaded
  2048  `(I)`  workaround for bug in platform firmware applied
  4096  `(O)`  externally-built ("out-of-tree") module was loaded
  8192  `(E)`  unsigned module was loaded
 16384  `(L)`  soft lockup occurred
 32768  `(K)`  kernel has been live patched
 65536  `(X)`  Auxiliary taint, defined and used by for distros
131072  `(T)`  The kernel was built with the struct randomization plugin
======  =====  ==============================================================

See :doc:`/admin-guide/tainted-kernels` for more information.

Note:
  writes to this sysctl interface will fail with ``EINVAL`` if the kernel is
  booted with the command line option ``panic_on_taint=<bitmask>,nousertaint``
  and any of the ORed together values being written to ``tainted`` match with
  the bitmask declared on panic_on_taint.
  See :doc:`/admin-guide/kernel-parameters` for more details on that particular
  kernel command line option and its optional ``nousertaint`` switch.

threads-max
===========

This value controls the maximum number of threads that can be created
using ``fork()``.

During initialization the kernel sets this value such that even if the
maximum number of threads is created, the thread structures occupy only
a part (1/8th) of the available RAM pages.

The minimum value that can be written to ``threads-max`` is 1.

The maximum value that can be written to ``threads-max`` is given by the
constant ``FUTEX_TID_MASK`` (0x3fffffff).

If a value outside of this range is written to ``threads-max`` an
``EINVAL`` error occurs.


traceoff_on_warning
===================

When set, disables tracing (see :doc:`/trace/ftrace`) when a
``WARN()`` is hit.


tracepoint_printk
=================

When tracepoints are sent to printk() (enabled by the ``tp_printk``
boot parameter), this entry provides runtime control::

    echo 0 > /proc/sys/kernel/tracepoint_printk

will stop tracepoints from being sent to printk(), and::

    echo 1 > /proc/sys/kernel/tracepoint_printk

will send them to printk() again.

This only works if the kernel was booted with ``tp_printk`` enabled.

See :doc:`/admin-guide/kernel-parameters` and
:doc:`/trace/boottime-trace`.


.. _unaligned-dump-stack:

unaligned-dump-stack (ia64)
===========================

When logging unaligned accesses, controls whether the stack is
dumped.

= ===================================================
0 Do not dump the stack. This is the default setting.
1 Dump the stack.
= ===================================================

See also `ignore-unaligned-usertrap`_.


unaligned-trap
==============

On architectures where unaligned accesses cause traps, and where this
feature is supported (``CONFIG_SYSCTL_ARCH_UNALIGN_ALLOW``; currently,
``arc`` and ``parisc``), controls whether unaligned traps are caught
and emulated (instead of failing).

= ========================================================
0 Do not emulate unaligned accesses.
1 Emulate unaligned accesses. This is the default setting.
= ========================================================

See also `ignore-unaligned-usertrap`_.


unknown_nmi_panic
=================

The value in this file affects behavior of handling NMI. When the
value is non-zero, unknown NMI is trapped and then panic occurs. At
that time, kernel debugging information is displayed on console.

NMI switch that most IA32 servers have fires unknown NMI up, for
example.  If a system hangs up, try pressing the NMI switch.


unprivileged_bpf_disabled
=========================

Writing 1 to this entry will disable unprivileged calls to ``bpf()``;
once disabled, calling ``bpf()`` without ``CAP_SYS_ADMIN`` or ``CAP_BPF``
will return ``-EPERM``. Once set to 1, this can't be cleared from the
running kernel anymore.

Writing 2 to this entry will also disable unprivileged calls to ``bpf()``,
however, an admin can still change this setting later on, if needed, by
writing 0 or 1 to this entry.

If ``BPF_UNPRIV_DEFAULT_OFF`` is enabled in the kernel config, then this
entry will default to 2 instead of 0.

= =============================================================
0 Unprivileged calls to ``bpf()`` are enabled
1 Unprivileged calls to ``bpf()`` are disabled without recovery
2 Unprivileged calls to ``bpf()`` are disabled
= =============================================================

watchdog
========

This parameter can be used to disable or enable the soft lockup detector
*and* the NMI watchdog (i.e. the hard lockup detector) at the same time.

= ==============================
0 Disable both lockup detectors.
1 Enable both lockup detectors.
= ==============================

The soft lockup detector and the NMI watchdog can also be disabled or
enabled individually, using the ``soft_watchdog`` and ``nmi_watchdog``
parameters.
If the ``watchdog`` parameter is read, for example by executing::

   cat /proc/sys/kernel/watchdog

the output of this command (0 or 1) shows the logical OR of
``soft_watchdog`` and ``nmi_watchdog``.


watchdog_cpumask
================

This value can be used to control on which cpus the watchdog may run.
The default cpumask is all possible cores, but if ``NO_HZ_FULL`` is
enabled in the kernel config, and cores are specified with the
``nohz_full=`` boot argument, those cores are excluded by default.
Offline cores can be included in this mask, and if the core is later
brought online, the watchdog will be started based on the mask value.

Typically this value would only be touched in the ``nohz_full`` case
to re-enable cores that by default were not running the watchdog,
if a kernel lockup was suspected on those cores.

The argument value is the standard cpulist format for cpumasks,
so for example to enable the watchdog on cores 0, 2, 3, and 4 you
might say::

  echo 0,2-4 > /proc/sys/kernel/watchdog_cpumask


watchdog_thresh
===============

This value can be used to control the frequency of hrtimer and NMI
events and the soft and hard lockup thresholds. The default threshold
is 10 seconds.

The softlockup threshold is (``2 * watchdog_thresh``). Setting this
tunable to zero will disable lockup detection altogether.