Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * IP/TCP/UDP checksumming routines * * Xtensa version: Copyright (C) 2001 Tensilica, Inc. by Kevin Chea * Optimized by Joe Taylor */ #include <linux/errno.h> #include <linux/linkage.h> #include <asm/asmmacro.h> #include <asm/core.h> /* * computes a partial checksum, e.g. for TCP/UDP fragments */ /* * unsigned int csum_partial(const unsigned char *buf, int len, * unsigned int sum); * a2 = buf * a3 = len * a4 = sum * * This function assumes 2- or 4-byte alignment. Other alignments will fail! */ /* ONES_ADD converts twos-complement math to ones-complement. */ #define ONES_ADD(sum, val) \ add sum, sum, val ; \ bgeu sum, val, 99f ; \ addi sum, sum, 1 ; \ 99: ; .text ENTRY(csum_partial) /* * Experiments with Ethernet and SLIP connections show that buf * is aligned on either a 2-byte or 4-byte boundary. */ abi_entry_default extui a5, a2, 0, 2 bnez a5, 8f /* branch if 2-byte aligned */ /* Fall-through on common case, 4-byte alignment */ 1: srli a5, a3, 5 /* 32-byte chunks */ #if XCHAL_HAVE_LOOPS loopgtz a5, 2f #else beqz a5, 2f slli a5, a5, 5 add a5, a5, a2 /* a5 = end of last 32-byte chunk */ .Loop1: #endif l32i a6, a2, 0 l32i a7, a2, 4 ONES_ADD(a4, a6) ONES_ADD(a4, a7) l32i a6, a2, 8 l32i a7, a2, 12 ONES_ADD(a4, a6) ONES_ADD(a4, a7) l32i a6, a2, 16 l32i a7, a2, 20 ONES_ADD(a4, a6) ONES_ADD(a4, a7) l32i a6, a2, 24 l32i a7, a2, 28 ONES_ADD(a4, a6) ONES_ADD(a4, a7) addi a2, a2, 4*8 #if !XCHAL_HAVE_LOOPS blt a2, a5, .Loop1 #endif 2: extui a5, a3, 2, 3 /* remaining 4-byte chunks */ #if XCHAL_HAVE_LOOPS loopgtz a5, 3f #else beqz a5, 3f slli a5, a5, 2 add a5, a5, a2 /* a5 = end of last 4-byte chunk */ .Loop2: #endif l32i a6, a2, 0 ONES_ADD(a4, a6) addi a2, a2, 4 #if !XCHAL_HAVE_LOOPS blt a2, a5, .Loop2 #endif 3: _bbci.l a3, 1, 5f /* remaining 2-byte chunk */ l16ui a6, a2, 0 ONES_ADD(a4, a6) addi a2, a2, 2 5: _bbci.l a3, 0, 7f /* remaining 1-byte chunk */ 6: l8ui a6, a2, 0 #ifdef __XTENSA_EB__ slli a6, a6, 8 /* load byte into bits 8..15 */ #endif ONES_ADD(a4, a6) 7: mov a2, a4 abi_ret_default /* uncommon case, buf is 2-byte aligned */ 8: beqz a3, 7b /* branch if len == 0 */ beqi a3, 1, 6b /* branch if len == 1 */ extui a5, a2, 0, 1 bnez a5, 8f /* branch if 1-byte aligned */ l16ui a6, a2, 0 /* common case, len >= 2 */ ONES_ADD(a4, a6) addi a2, a2, 2 /* adjust buf */ addi a3, a3, -2 /* adjust len */ j 1b /* now buf is 4-byte aligned */ /* case: odd-byte aligned, len > 1 * This case is dog slow, so don't give us an odd address. * (I don't think this ever happens, but just in case.) */ 8: srli a5, a3, 2 /* 4-byte chunks */ #if XCHAL_HAVE_LOOPS loopgtz a5, 2f #else beqz a5, 2f slli a5, a5, 2 add a5, a5, a2 /* a5 = end of last 4-byte chunk */ .Loop3: #endif l8ui a6, a2, 0 /* bits 24..31 */ l16ui a7, a2, 1 /* bits 8..23 */ l8ui a8, a2, 3 /* bits 0.. 8 */ #ifdef __XTENSA_EB__ slli a6, a6, 24 #else slli a8, a8, 24 #endif slli a7, a7, 8 or a7, a7, a6 or a7, a7, a8 ONES_ADD(a4, a7) addi a2, a2, 4 #if !XCHAL_HAVE_LOOPS blt a2, a5, .Loop3 #endif 2: _bbci.l a3, 1, 3f /* remaining 2-byte chunk, still odd addr */ l8ui a6, a2, 0 l8ui a7, a2, 1 #ifdef __XTENSA_EB__ slli a6, a6, 8 #else slli a7, a7, 8 #endif or a7, a7, a6 ONES_ADD(a4, a7) addi a2, a2, 2 3: j 5b /* branch to handle the remaining byte */ ENDPROC(csum_partial) /* * Copy from ds while checksumming, otherwise like csum_partial */ /* unsigned int csum_partial_copy_generic (const char *src, char *dst, int len) a2 = src a3 = dst a4 = len a5 = sum a8 = temp a9 = temp a10 = temp This function is optimized for 4-byte aligned addresses. Other alignments work, but not nearly as efficiently. */ ENTRY(csum_partial_copy_generic) abi_entry_default movi a5, -1 or a10, a2, a3 /* We optimize the following alignment tests for the 4-byte aligned case. Two bbsi.l instructions might seem more optimal (commented out below). However, both labels 5: and 3: are out of the imm8 range, so the assembler relaxes them into equivalent bbci.l, j combinations, which is actually slower. */ extui a9, a10, 0, 2 beqz a9, 1f /* branch if both are 4-byte aligned */ bbsi.l a10, 0, 5f /* branch if one address is odd */ j 3f /* one address is 2-byte aligned */ /* _bbsi.l a10, 0, 5f */ /* branch if odd address */ /* _bbsi.l a10, 1, 3f */ /* branch if 2-byte-aligned address */ 1: /* src and dst are both 4-byte aligned */ srli a10, a4, 5 /* 32-byte chunks */ #if XCHAL_HAVE_LOOPS loopgtz a10, 2f #else beqz a10, 2f slli a10, a10, 5 add a10, a10, a2 /* a10 = end of last 32-byte src chunk */ .Loop5: #endif EX(10f) l32i a9, a2, 0 EX(10f) l32i a8, a2, 4 EX(10f) s32i a9, a3, 0 EX(10f) s32i a8, a3, 4 ONES_ADD(a5, a9) ONES_ADD(a5, a8) EX(10f) l32i a9, a2, 8 EX(10f) l32i a8, a2, 12 EX(10f) s32i a9, a3, 8 EX(10f) s32i a8, a3, 12 ONES_ADD(a5, a9) ONES_ADD(a5, a8) EX(10f) l32i a9, a2, 16 EX(10f) l32i a8, a2, 20 EX(10f) s32i a9, a3, 16 EX(10f) s32i a8, a3, 20 ONES_ADD(a5, a9) ONES_ADD(a5, a8) EX(10f) l32i a9, a2, 24 EX(10f) l32i a8, a2, 28 EX(10f) s32i a9, a3, 24 EX(10f) s32i a8, a3, 28 ONES_ADD(a5, a9) ONES_ADD(a5, a8) addi a2, a2, 32 addi a3, a3, 32 #if !XCHAL_HAVE_LOOPS blt a2, a10, .Loop5 #endif 2: extui a10, a4, 2, 3 /* remaining 4-byte chunks */ extui a4, a4, 0, 2 /* reset len for general-case, 2-byte chunks */ #if XCHAL_HAVE_LOOPS loopgtz a10, 3f #else beqz a10, 3f slli a10, a10, 2 add a10, a10, a2 /* a10 = end of last 4-byte src chunk */ .Loop6: #endif EX(10f) l32i a9, a2, 0 EX(10f) s32i a9, a3, 0 ONES_ADD(a5, a9) addi a2, a2, 4 addi a3, a3, 4 #if !XCHAL_HAVE_LOOPS blt a2, a10, .Loop6 #endif 3: /* Control comes to here in two cases: (1) It may fall through to here from the 4-byte alignment case to process, at most, one 2-byte chunk. (2) It branches to here from above if either src or dst is 2-byte aligned, and we process all bytes here, except for perhaps a trailing odd byte. It's inefficient, so align your addresses to 4-byte boundaries. a2 = src a3 = dst a4 = len a5 = sum */ srli a10, a4, 1 /* 2-byte chunks */ #if XCHAL_HAVE_LOOPS loopgtz a10, 4f #else beqz a10, 4f slli a10, a10, 1 add a10, a10, a2 /* a10 = end of last 2-byte src chunk */ .Loop7: #endif EX(10f) l16ui a9, a2, 0 EX(10f) s16i a9, a3, 0 ONES_ADD(a5, a9) addi a2, a2, 2 addi a3, a3, 2 #if !XCHAL_HAVE_LOOPS blt a2, a10, .Loop7 #endif 4: /* This section processes a possible trailing odd byte. */ _bbci.l a4, 0, 8f /* 1-byte chunk */ EX(10f) l8ui a9, a2, 0 EX(10f) s8i a9, a3, 0 #ifdef __XTENSA_EB__ slli a9, a9, 8 /* shift byte to bits 8..15 */ #endif ONES_ADD(a5, a9) 8: mov a2, a5 abi_ret_default 5: /* Control branch to here when either src or dst is odd. We process all bytes using 8-bit accesses. Grossly inefficient, so don't feed us an odd address. */ srli a10, a4, 1 /* handle in pairs for 16-bit csum */ #if XCHAL_HAVE_LOOPS loopgtz a10, 6f #else beqz a10, 6f slli a10, a10, 1 add a10, a10, a2 /* a10 = end of last odd-aligned, 2-byte src chunk */ .Loop8: #endif EX(10f) l8ui a9, a2, 0 EX(10f) l8ui a8, a2, 1 EX(10f) s8i a9, a3, 0 EX(10f) s8i a8, a3, 1 #ifdef __XTENSA_EB__ slli a9, a9, 8 /* combine into a single 16-bit value */ #else /* for checksum computation */ slli a8, a8, 8 #endif or a9, a9, a8 ONES_ADD(a5, a9) addi a2, a2, 2 addi a3, a3, 2 #if !XCHAL_HAVE_LOOPS blt a2, a10, .Loop8 #endif 6: j 4b /* process the possible trailing odd byte */ ENDPROC(csum_partial_copy_generic) # Exception handler: .section .fixup, "ax" 10: movi a2, 0 abi_ret_default .previous |