Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Google LLC * Author: Quentin Perret <qperret@google.com> */ #include <linux/kvm_host.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/kvm_pgtable.h> #include <asm/stage2_pgtable.h> #include <hyp/switch.h> #include <nvhe/gfp.h> #include <nvhe/memory.h> #include <nvhe/mem_protect.h> #include <nvhe/mm.h> #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) extern unsigned long hyp_nr_cpus; struct host_kvm host_kvm; static struct hyp_pool host_s2_mem; static struct hyp_pool host_s2_dev; /* * Copies of the host's CPU features registers holding sanitized values. */ u64 id_aa64mmfr0_el1_sys_val; u64 id_aa64mmfr1_el1_sys_val; static const u8 pkvm_hyp_id = 1; static void *host_s2_zalloc_pages_exact(size_t size) { return hyp_alloc_pages(&host_s2_mem, get_order(size)); } static void *host_s2_zalloc_page(void *pool) { return hyp_alloc_pages(pool, 0); } static int prepare_s2_pools(void *mem_pgt_pool, void *dev_pgt_pool) { unsigned long nr_pages, pfn; int ret; pfn = hyp_virt_to_pfn(mem_pgt_pool); nr_pages = host_s2_mem_pgtable_pages(); ret = hyp_pool_init(&host_s2_mem, pfn, nr_pages, 0); if (ret) return ret; pfn = hyp_virt_to_pfn(dev_pgt_pool); nr_pages = host_s2_dev_pgtable_pages(); ret = hyp_pool_init(&host_s2_dev, pfn, nr_pages, 0); if (ret) return ret; host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) { .zalloc_pages_exact = host_s2_zalloc_pages_exact, .zalloc_page = host_s2_zalloc_page, .phys_to_virt = hyp_phys_to_virt, .virt_to_phys = hyp_virt_to_phys, .page_count = hyp_page_count, .get_page = hyp_get_page, .put_page = hyp_put_page, }; return 0; } static void prepare_host_vtcr(void) { u32 parange, phys_shift; /* The host stage 2 is id-mapped, so use parange for T0SZ */ parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, id_aa64mmfr1_el1_sys_val, phys_shift); } int kvm_host_prepare_stage2(void *mem_pgt_pool, void *dev_pgt_pool) { struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu; int ret; prepare_host_vtcr(); hyp_spin_lock_init(&host_kvm.lock); ret = prepare_s2_pools(mem_pgt_pool, dev_pgt_pool); if (ret) return ret; ret = kvm_pgtable_stage2_init_flags(&host_kvm.pgt, &host_kvm.arch, &host_kvm.mm_ops, KVM_HOST_S2_FLAGS); if (ret) return ret; mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd); mmu->arch = &host_kvm.arch; mmu->pgt = &host_kvm.pgt; mmu->vmid.vmid_gen = 0; mmu->vmid.vmid = 0; return 0; } int __pkvm_prot_finalize(void) { struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu; struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); params->vttbr = kvm_get_vttbr(mmu); params->vtcr = host_kvm.arch.vtcr; params->hcr_el2 |= HCR_VM; kvm_flush_dcache_to_poc(params, sizeof(*params)); write_sysreg(params->hcr_el2, hcr_el2); __load_stage2(&host_kvm.arch.mmu, host_kvm.arch.vtcr); /* * Make sure to have an ISB before the TLB maintenance below but only * when __load_stage2() doesn't include one already. */ asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); /* Invalidate stale HCR bits that may be cached in TLBs */ __tlbi(vmalls12e1); dsb(nsh); isb(); return 0; } static int host_stage2_unmap_dev_all(void) { struct kvm_pgtable *pgt = &host_kvm.pgt; struct memblock_region *reg; u64 addr = 0; int i, ret; /* Unmap all non-memory regions to recycle the pages */ for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { reg = &hyp_memory[i]; ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr); if (ret) return ret; } return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr); } static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) { int cur, left = 0, right = hyp_memblock_nr; struct memblock_region *reg; phys_addr_t end; range->start = 0; range->end = ULONG_MAX; /* The list of memblock regions is sorted, binary search it */ while (left < right) { cur = (left + right) >> 1; reg = &hyp_memory[cur]; end = reg->base + reg->size; if (addr < reg->base) { right = cur; range->end = reg->base; } else if (addr >= end) { left = cur + 1; range->start = end; } else { range->start = reg->base; range->end = end; return true; } } return false; } static bool range_is_memory(u64 start, u64 end) { struct kvm_mem_range r1, r2; if (!find_mem_range(start, &r1) || !find_mem_range(end, &r2)) return false; if (r1.start != r2.start) return false; return true; } static inline int __host_stage2_idmap(u64 start, u64 end, enum kvm_pgtable_prot prot, struct hyp_pool *pool) { return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start, prot, pool); } static int host_stage2_idmap(u64 addr) { enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W; struct kvm_mem_range range; bool is_memory = find_mem_range(addr, &range); struct hyp_pool *pool = is_memory ? &host_s2_mem : &host_s2_dev; int ret; if (is_memory) prot |= KVM_PGTABLE_PROT_X; hyp_spin_lock(&host_kvm.lock); ret = kvm_pgtable_stage2_find_range(&host_kvm.pgt, addr, prot, &range); if (ret) goto unlock; ret = __host_stage2_idmap(range.start, range.end, prot, pool); if (is_memory || ret != -ENOMEM) goto unlock; /* * host_s2_mem has been provided with enough pages to cover all of * memory with page granularity, so we should never hit the ENOMEM case. * However, it is difficult to know how much of the MMIO range we will * need to cover upfront, so we may need to 'recycle' the pages if we * run out. */ ret = host_stage2_unmap_dev_all(); if (ret) goto unlock; ret = __host_stage2_idmap(range.start, range.end, prot, pool); unlock: hyp_spin_unlock(&host_kvm.lock); return ret; } int __pkvm_mark_hyp(phys_addr_t start, phys_addr_t end) { int ret; /* * host_stage2_unmap_dev_all() currently relies on MMIO mappings being * non-persistent, so don't allow changing page ownership in MMIO range. */ if (!range_is_memory(start, end)) return -EINVAL; hyp_spin_lock(&host_kvm.lock); ret = kvm_pgtable_stage2_set_owner(&host_kvm.pgt, start, end - start, &host_s2_mem, pkvm_hyp_id); hyp_spin_unlock(&host_kvm.lock); return ret != -EAGAIN ? ret : 0; } void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) { struct kvm_vcpu_fault_info fault; u64 esr, addr; int ret = 0; esr = read_sysreg_el2(SYS_ESR); BUG_ON(!__get_fault_info(esr, &fault)); addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; ret = host_stage2_idmap(addr); BUG_ON(ret && ret != -EAGAIN); } |